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1. INTRODUCTION

One of our basic aims here is to obtain improved error bounds for spline
and L-spline interpolation at knots, and to obtain certain stability (or
perturbation) results for such forms of interpolation. To give a concrete
example to illustrate our aim, consider for simplicity the interpolation of a
given function f defined on [a, b} by a smooth cubic spline s over a uniform
partition 4, of [a, b]. Normally, if /e C'[a, b], then its unique cubic spline
interpolant s is defined by

sa+ih)=fla+in), O0<Li<N, h=(b-—a)N, 11
Ds(a) = Df(a), Ds(b) = Df(b), D = djdx. (L.1)

If, on the other hand, fis only continuous on [a, b], the second part of (1.1)
must be modified; for example, one may assume that Ds(a) = Ds(b) = 0-
However, from a computational point of view, it would be advantageous
to have a single definition for Ds(a) and for Ds(b) which does not depend
explicitly on the continuity class of f, and for which optimal interpolation
errors are obtained. For example, suppose that we define the cubic spline
interpolant s of f by means of

s(a + ih) = f(a + ih), 0<<i<N,
Ds(a) = (1/6m){—11f(a) + 18f(a + h) — 9f(a + 2h) + 2f(a + 3h)},
Ds(b) = (1/6m){11f(b) — 18f(b — h) + 9f (b — 2h) — 2f(b — 3h)}. (1.2)
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ERROR BOUNDS FOR SPLINE INTERPOLATION 7

Because the definitions of Ds(a) and Ds(b) come from the derivative of a
cubic Lagrange polynomial interpolation of f in particular knots, it will be
shown in Section 7 that there exists a constant K, independent of f and 4,
such that if fe C¥[a, b], 0 << k < 4, then

th_]w(Dky' l’l) > ” D](f_ S)HLm[a,b] > 0< J< k,

I Dis e tont s if k<j<3 39

Moreover, we will show that error bounds similar to those of (1.3) are valid
if s interpolates values close to those of f (cf. Theorem 7.6); we shall call such
results stability results.

Another basic aim here is to obtain new interpolation error bounds for
general L-splines (cf. Theorem 3.5), to obtain new interpolation error bounds
in the uniform norm for splines defined on uniform partitions of [a, b]
(cf. Theorem 7.4), and to obtain analogous interpolation error bounds in the
uniform norm for Hermite L-splines (cf. Theorem 6.1), along with stability
results related to such error bounds. In Section 8, extensions of these results
for polynomial splines to more general boundary conditions are treated. In
so doing, we shall fill some gaps in the existing literature for such interpolation
error bounds. A survey of the relevant literature concerning polynomial-
spline approximations is also contained in Section 7.

2. NOTATION

For —o0 << a < b < 4+ o and for a positive integer N,
let

d:a=xy<x; < <xy=2»b 2.1)

denote a partition of [a, b] with knots x; . The collection of all such partitions
4 of [a, b}is denoted by P(a, b). We further define 7 = maxy<;<y_1 (Xis1— X2
and 7 = ming<;<y_; (X;41 — X,) for each partition 4 of the form (2.1). For
any real number o with ¢ > 1, #(a, b) then denotes the subset of all parti-
tions 4 in #(a, b) for which

njr < o. 2.2)

In particular, Z,(a, b) is the collection of all uniform partitions of [a, b], and
its elements are denoted by 4,, .

Since we shall make extensive use of L-splines, we now briefly describe
them. Given the differential operator L of order m,

Lu(x) = i ¢(x) Diu(x), m>=1, Di = (d/dx), 2.3)

j=0
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where ¢; € C'[a, b], 0 <j < m, with ¢,(x) > 6 > 0 for all x¢ [a, b], and
given the partition 4 of (2.1), for N > 1 let z = (z;, z, ,..., Zy—y), the inci-
dence vector, be an (N — 1)-tuple of positive integers with 1 <z, < m,
1 <i< N — 1. Then, Sp(L, 4, z), the L-spline space, is the collection of all
real-valued functions w defined on [a, 5] such that (cf. Ahlberg, Nilson, and
Walsh [3, Chapter 6] and Schultz and Varga [32])

L*LW(X) = 09 X € (aa b) - {xi}i’\f—-_llv

2.4
Diw(x;—) = D*w(x;+) for 0 <k <2m —1—2z,, 0<i <N,

where L* is the formal adjoint of L. From (2.4), we see that
Sp(L, 4, z) C C¥*~+-1[q, b]

where p = max;<;<y_1 2 -

In the special case L = D™, the elements of Sp(D™, 4, z) are, from (2.4),
polynomials of degree (2m — 1) on each subinterval of 4, and as such are
called polynomial splines. More specially, when L = D™ and

Z,,;Em,o<i<N,

the associated L-spline space is called the Hermite space, and is denoted by
H™(4). From (2.4), H™(d4) C C™[a, b]. Similarly, when L = D™ and
z; = 1,0 < i < N, the associated L-spline space is called the spline space,
and is denoted by Sp™(4). Again from (2.4), Sp™(d4) C C*"2?[q, b].

While our discussion makes explicit use of L-splines, it will be clear that
most of the techniques used here in obtaining our L-spline interpolation error
bounds can be modified to apply to the more general definitions of splines
appearing in Jerome and Pierce [18], Jerome and Schumaker [19], Lucas
[21], and Varga [40]. For the definitions and properties of these more general
splines, we refer to the previously cited references.

As measures of the smoothness of the functions we interpolate, we recall
first the Sobolev norm

1 lwmtenr = 2 1| Difllfa. » (2.5
=0

where the Sobolev space W,™[a, b], for m a positive integer and 1 < g < o0,
is the collection of all real-valued functions f(x) defined on {a, b] with D™-1f
absolutely continuous on [a, ], and with D"fe L [a, b]. Next, if given
4 € P(a, b) and if Dig e L,[x;, x;,,} for each subinterval [x;, x;,;], we use
the following modified definition,

1 /r

3 N- ) 1
1 Dg |1 fa] = 3 Y | Dg s tmneia| s (2.6)

=0
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of the L,-norm of D’g over [a, b], even if Dig ¢ L, [a, b]. Next, if f is any
bounded function defined on [a, 5], then

w(fihy=sup{{f(x+1t)—fX)] :x,x+tin [a,b] and |t | < h} (2.7)

denotes the usual modulus of continuity of f.

Finally, we shall throughout denote any generic constant which is indepen-
dent of the functions considered and is independent of the maximum mesh
spacing 7, by the general symbol K. However, these constants in general do
depend in particular upon m, (b — a), and the order of various derivatives
considered, as well as upon the constant o if 4 € Z(a, b).

3. Basic CoMPARISON FUNCTIONS

The idea behind the proofs to follow is an elementary one, based on the
triangle inequality. From known interpolation errors for smooth functions
g (e.g., Lemma 3.1), error bounds for less smooth functions f are determined
as follows. A smooth piecewise polynomial interpolation g of fis constructed,
and bounds for f — g are determined (Lemma 3.2). A spline interpolate, s,
of f'is then defined, which is also a spline interpolant of this smooth g. Then,
bounds for f — s will follow from known bounds for f — g and g — s.

To begin, given any g € C™1[a, b], it is known (cf. Schultz and Varga [32])
that there exists a unique s € Sp(L, 4, z) such that

Di(g —s)x)=10, 0<j<z;—1, if 0<i<N,

.1

Di(g —s)a) = Di(g —s)b) =0, O0<j<m—1, G
and s is said to interpolate g under Hermite boundary conditions, correspon-
ding to the fact that s interpolates g and all its derivatives at the endpoints of
[a, b]. Because such boundary interpolation insures the second integral
relation (cf. Ahlberg, Nilson, and Walsh [3, p. 205]) the following error
bounds are typical (cf. Hedstrom and Varga [16, Theorem 3.6]), and follow
from results of Jerome and Varga [20], Schultz and Varga [32], and Perrin
[25].

LemMa 3.1. Given g € Wi™[a, b] and given 4 € P(a, b), let s be the unique
element in Sp(L, 4, z) which interpolates g in the sense of (3.1). Then, for
2<q< o,

| D(g — )L lap) S Katm—i=ADHA/D |l g flpemp, 1, 0 << j<2m — 1.
(3.2)
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For polynomial splines, i.e., L = D™, || g ™,y can be replaced by

| D¥"g Il ;.01
in (3.2).

We remark that such error bounds (3.2) are in fact valid for more general
boundary interpolation (cf. Schultz and Varga [32, Theorem 8]), as well as
for the more general Besov spaces (cf. Hedstrom and Varga [16]). Generaliza-
tions to other boundary interpolation will be given in Section 8, but generali-
zations to Besov spaces, which follow rather easily from the results of [16],
will not be considered here. It is interesting to note that the proof of
Lemma 3.1 requires only the tools of advanced calculus.

We now construct a polynomial spline g € H@™+9(4) which is close to a
given (not necessarily smooth) function f defined on [a, 5.

LeMMA 3.2. Given fe C*a, b] with 0 < k < 2m and given 4 € ? (a, b),
let g be the unique element in H®™+ V() such that

D(f—gx)=0 0<j<k 0<i<N, 53
Dig(x) =0, k<j<2m, 0<i<N )
Then, g € C*™[a, b} and
c—j HD](f_g)“L [a,b] » Oéjgka
k- k wla,
Kn* w(D¥, w) = | Dig Il ton) - k<j<om. (3.4)

Proof. Given 4m + 2 arbitrary real numbers «;, 8;,0 < i < 2m, and
any finite interval [¢, d] with ¢ < d, it is well known that there exists a unique
polynomial p(x) of degree at most (4m -+ 1) such that Dip(c) = oy,
Dip(d) = B;, 0 < j < 2m. From this, it follows that a unique polynomial
spline g € H®@"+1(4) exists, satisfying (3.3). It thus remains to prove (3.4).

First we establish the special case k& = 0 of (3.4). Let ¢, ,(x) and ¢, ,(x) be
the unique polynomials of degree (4m + 1) (cf. the proof of Theorem 7.4)
such that

Dig; (0) = 8;:8;4, Dihi(1) =8;:8,,, 0<j<2m, i=0,1, (3.5
where 3, ; denotes the Kronecker & function. It is readily verified that
Po0(x) =0, ¢1(x) =0, and g o(x) + P1ox) =1 for xe[0, 1], (3.6)

so that ¢ 4 and ¢, o form a partition of unity. If [x;, x;,,] is any subinterval
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of [a, b] determined from 4 € Z(a, b), it follows from (3.3) that g can be
expressed as

80) =fx) doo () +/0xira) buo (), ®e b xial B)

where h; = x;,; — x; . Since ¢, 4 -+ ¢, = 1, we can express f(x) as
J6) = 109 oo (*

Thus,

(F = D@ < 1) = fexd] b () + 1) = fxea)] $uo ()

< o(f, hy) for xe [xi s Xialhs

=) 0 b () xe b v

using the definition of the modulus of continuity w in (2.7). But as
o(f, h) < o(f,7),
then
1f — gllttan < olf; m),

the desired first inequality of (3.4) for the case k& = 0. Next, again using the
fact that ¢y o + 1.6 = 1, it follows from (3.7) that

Dig(x) = h(fex) — flxar) D'doo () xe by,
and hence,
I D8 e fzparg < Kho(f, m),  1<j<2m,
But, as b7 < (7)7 < (w/o) 7 since 4 € P (a, b), [cf. (2.2)], we thus have
| Dg L fan < Kn-iw(f, ), 1 <j<2m,

the desired second inequality of (3.4) for the case k = 0.
Suppose now that k£ > 1. From Taylor’s formula, we can write for
x € [x;, x;,4] that

k—1 J X . o . _
S =¥ Dj;(,x') (= xF + ¢ ’fkl)! | : (- t)j " DY (x, + hat)

_{y=0F1  for y =1y,
for y <t
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Because

T [ =) = -

we can also express f(x) as

f(X) — Z Df(xz)

j=0

O — Xy + 4 (x x;)

h*

+ k — ! f: (x ;ix - t)k {D*(x; + hit) — o} dt, (3.8)

for any scalar a. Next, for each fixed ¢, € (0,1), let Q( y; #,) be the polynomial
interpolation, as a function of y, of (y — 7,)*™" such that Q( y, ¢,) is a poly-
nomial of degree (4m + 1) in y with

D (yl Wi 0<j<k

]Q(YL,to)— k<j<2m’ l:()orla

where y, = 0 and y, = 1, and D, denotes differentiation with respect to the
first variable, y. Because this interpolation of (3.3) is linear and in fact exact
for polynomials of degree at most k, we have, in the manner of the Peano
kernel theorem (cf. Sard [26, p. 14]) that the function g of (3.3) can be
expressed on [x;, x;,,] for any scalar « as

g) = ¥ 2L v — i 73‘-! (x — )t

i=0

k—1)vJQ( ){Dkf(xz‘}‘hl)—a}dt

+ hF [(Dkf(xi) — a) $o.x ( ;z Xi)

+ (DH(xin) — @) dre (F7)|- (3.9)
Subtracting (3.9) from (3.8) gives us, after differentiation,
D7 — ) = ey [ o {555 - ) — e ()|
X {D*(x; + hit) — a} dt
— W7 (DY) — ) Do (S5

+ (D (X141) — o) Dicy s (x ;l xi)], (3.10)
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for 0 <{j < k — 1. Because Di¢; ,( ») is bounded in [0, 1] and
DJ(y — i — Q(y; 1)}

is uniformly bounded in [0, 1] x [0, 1] for all 0 <j <<k — 1, we see from
(3.10) that for x € [x; , X;14],

D = 9 < K[ D+ by — |
+ | DMf(x;) — o + | D(Xia) — el (3.11)
Hence, upon choosing o = D*f(x), we have

D(f ~ Dl fapwed < KW 70D, m),  0<j<k—1,

from which the first inequality of (3.4) follows for 0 <{j << k — 1.
For the case j = k > 1, we have using (3.9) that

DHf — ) = (D) — o) — =57 | D@ (F551)

X {D*(x; + h;it) — o} dt

~ D) — o Do (25

= [DY(xiys) — o] Dis (F70).

Again, choosing o = D*f(x), we see that each of the above terms can be
bounded above in terms of w(D¥f, =), so that

I D — Dlfeisi) < KD, ),  0O<i<N-—1,

from which the special case j = k of (3.4) follows.
For the case 1 << k < j < 2m, it follows from (3.9) that

1
[,pre

+ [DH(x) — a Digh e (* 7 =)

Dlg(x) = k-

=5 ) (DY (x4 bty — o drf(k — 1!

+ (DY) — o] D (). (3.12)
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Because D¢, ;( y) is bounded in [0, 1] and D,Q( y; ¢) is uniformly bounded
in [0, 1] x [0, 1] for all 0 < j < 2m, the choice « = D*f(x) then gives

I D8 L tepr) < KW (D, m),  O0<i<N-—1

Again, since 4 € Z(a, b), the above inequality can be extended over [a, b] in
the manner of (2.6), to give

| Dg Lot < Kn* (DY, m),  k < j < 2m,

the desired second inequality of (3.4). Q.E.D.

Since by definition W¥*[a, b] C C¥a, b] for any 1 < r < oo, the results
of Lemma 3.2 directly apply to the elements of W**![q, b]. In this case, the
modulus of continuity w(D*f, =) can be suitably bounded above as follows.
For any f'e W/[a, b] and any x, y € [a, b] with 0 < | y — x| < 7, we see
from Holder’s inequality that

| D) — o)l = | [ Doy de | < 1y — x P | D o

so that
w(D¥f, m) < 7D | DML a0 (3.13)

Substituting the above inequality in (3.4) then gives the error bounds of
(3.14) in the uniform norm, ¢ = oo. In a similar way beginning with (3.11)
and using Jensen’s inequality, as in Birkhoff, Schultz, and Varga [7,
Theorem 2], we also obtain error bounds in the L, norm. We state this as

COROLLARY 3.3. With the hypotheses of Lemma 3.2, if f € W¥[a, b]
with0 < k <2mand] <r < oo, then forr < q < oo,

I1D(f — &ligtanr, 0<J <k,
N D’g e fa.01 > k <j<2m.
(3.14)

Actually, a more general form of Corollary 3.3 can be established, which
is closely related to the recent interpolation results of Golomb [15] for
functions f with D*f piecewise continuous on [a, b]. We give this in
Corollary 3.4 below. See also Swartz [39, Corollary 4.3] for the corresponding
generalization of Lemma 3.2.

Kakti—i—(1/r+1/a) ” Dk+lf'“L [a.0] >

COROLLARY 3.4. Given f(x) defined on [a, b] such that D*'f (for k > 1)
is absolutely continuous and D*f, 0 <C k < 2m, is defined and piecewise-
continuous on [a, b] with M > O discontinuities in the points { y;}}1, C (a, b),
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assume that D*f is absolutely continuous on each subinterval (y;,y:.1),
0 < i < Ma (Whe"eJ’o =4, VM1 = ba)s with Dk+]:fe Lr[yi ’yi+1]9 0 < i < M’
where 1 <r < . If A€ P(a,b), and if g in H2™V(A4) is the unique inter-
polant of f in the sense of (3.3), then for r < q < o,

K-t (MDY, ) + =07 || DY g

1D(f — Dlrgam, 0 <j<k
= . i . 3.15
Z W Dig i gan k<j<om. (3.15)

Proof. As in the case of Corollary 3.3, we shall establish the inequality
of (3.15) only in the case ¢ = o0; the case of general g with r << g <
follows again from Jensen’s inequality. For any subinterval [x;, x;,;] deter-
mined by the partition 4 of [a, b], suppose first that [x;, x;,;] contains no
discontinuity of D*f. Then, for 0 < j < k — 1, it follows from (3.11) with
o = D*f(x) and from (3.13) that

| DS — D fosaiggd S Ka*H == (| DEAS 1 .

As in the proof of Lemma 3.2, this inequality is also valid for & = j. On the
other hand, if [x;, x;,,] does contain at least one discontinuity of D*f, then
it follows from (3.11) with « = D*f(x) that for 0 <j < k,

l D](f g)”L o] 2 K"k_]w(D]ff 77)

Since the sum of the upper bounds of the previous inequalities bounds
Il DiI(f — 2l Lo le;.2,,,] for any i, then we deduce that

I D(f — D fan) < K{m =0 || Dl g1 + 7* (DY, m)},

which is the desired result of the first inequality of (3.15) when ¢ = co. The
rest is similarly established. Q.E.D.

As an example illustrating the result of Corollary 3.4, consider any
fe Wyll0, 1] with f(0) = 1, and define f on [—1, +1] by means of an odd
extension, so that fis discontinuous at x = 0. Then, fsatisfics the hypotheses
of Corollary 3.4 with k = 0 and M = 1. As w(f,7) > 2 and is bounded
above, we have from (3.15) with r = ¢ = 2 and j = 0 that

lf—g ”Lz[—1 a1 < K{7Po(f, m) + = || Df”Lz[—d +11)-

We now prove an analogue of Lemma 3.1 which includes less smooth
functions.

640/6/1-2
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THEOREM 3.5. Given fe C¥a, b] with 0 < k << 2m and given 4 € Z(a, b),
let s be the unique element in Sp(L, 4, 2) such that for zy = m = z,, ,

Di(f —s)(x;) =0, 0<j<mink,z~—1), 0<i<N,
Dis(x;) = 0, if mintk,z;, -~ 1) <j<z;—1, 0<<i<N.

(3.16)
Then, for 2 < g < o,
Kmk=i=0+ 0/ y(DYf, 7) + w2 || £l ka,0)
o 1D = Mgawr,  0<j <k, (3.17)

“ A Dislicytan s if k<j<2m-—1L

For polynomial splines, i.e., L = D™, the term involving || f|lw x5 can be
deleted in (3.17).

Proof. Given fe C¥a, b], let ge C?®[a, b] be its interpolation in the
sense of (3.3) of Lemma 3.2. The triangle inequality gives us for2 < ¢ < o
that

I DI — $llefan) < I D — Oliggla,d + | D(& — rtemrs 0 <Jj<k.
(3.18)

Next, note that s, while interpolating f as described in (3.16), necessarily also
interpolates g in the sense of Lemma 3.1. Thus, from (3.2) of Lemma 3.1,

| Di(g — Sl la,p) < Ko i=WAAMA || g flpampy o3, 0 <j<2m — L
3.19

We now bound || g |2,y - For any / with & </ < 2m, we have from (3.4)
of Lemma 3.2 that

| D'g |iyta,e) < Ko '(D, m), k<1< 2m. (3.20)
For any [ with 0 < / < k, we evidently have

I D'g lIael <N D — Dlinap) + I D llrgamr, 0 <<k

Using (3.4) of Lemma 3.2 to bound the first term on the right-hand side of
the above inequality gives

| D8 a1 < Ka* (D, @) + || DY lIryfanr, O <I<k. (321
Then summing the inequalities of (3.20) and (3.21) gives [cf. (2.5)]

am
| & llwimia,o) = Yl Dlg”Lz[a.b] < K{m* (DY, ) + L llw*1a, 5135

=0
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and substituting this bound in (3.19) then yields the following upper bound
for the last term of (3.18):

| DI(g — )l fap) < Kabmi= A2+ (DY, 7) + 7™ F || fllw*10,00}
0<j<2m—1. (3.22)

Of course, if polynomial splines are used (L = D™), the term involving
Il /1w, 14,01 can be deleted (cf. Lemma 3.1). Finally, the first term on the
right-hand side of (3.18) can be bounded above by (3.4) of Lemma 3.2, so
that combining this bound with (3.22) gives

1D(f — Sz lan) S Kah=I=QRH0D{(DYf, 1) 4 7% | f |l 4a,00,
0<j<k

the desired result of the first inequality of (3.17). Next, if k <j << 2m — 1,

then the use of the same technique to bound the terms on the right-hand side
of

| Dislirfaen < 1 D& — Sliggany + 1 Dglleapr, i k <j<2m—1,
yields the second inequality of (3.17). Q.E.D.

In a similar way, the following extension of Theorem 3.5 is easily
established.

COROLLARY 3.6. With the hypotheses of Theorem 3.5, if fe WEa, b]
withl <r < 0 and 0 < k << 2m, then for max(r,2) < q < o,

Kﬂk+1—j+(1/¢1)+min(—1/r,—1/2) ”f”Wﬁ'H[a,b]

| D(f = gosts 0 <j<h, 523
N DS || e if k<j<2m-—1 '

For polynomial splines, || f lw*+ 14,01 , can be replaced in (3.23) by || D+f || L,la.01-

There is, of course, an obvious extension of the result of Corollary 3.6,
under the weaker hypotheses of Corollary 3.4. Such extensions will, for
reasons of brevity, be omitted.

We remark that Corollary 3.6 generalizes the result of Lemma 3.1, in that
the first inequality of (3.23) of Corollary 3.6 for the case k = 2m — 1 and
r = 2, reduces to the inequality (3.2) of Lemma 3.1.

For the error bounds established in this section for various types of spline
interpolation, we remark that in many cases these bounds have been shown
(as in Birkhoff, Schultz, and Varga [7], Schultz and Varga [32], and Golomb



18 SWARTZ AND VARGA

[15)) to be sharp, in the sense that the exponents of 7 cannot in general be
improved. Finally, since the result of Corollary 3.6 is valid for general
L-splines, we remark that the bounds of (3.23) in particular extend to even
less smooth functions all the upper bounds recently obtained by Schultz [31]
for polynomial splines, i.e., L = D™

4. L-SPLINE INTERPOLANTS VIA LAGRANGE INTERPOLATION

We begin with the following extension of a result of Schultz [29, Theorem
6.1].

THEOREM 4.1. Given f< C*a, b}, k = 0, and given 4 € $(a, b) with at
least (n + 1) knots, ie., d:a = xy <x; <+ <xy=0>b with N = n, let
L, :f,n>=1 fixed, denote the Lagrange polynomial interpolation of degree n
of fin the knots x; , X;11 yeees Xi4n , Where 0 < i < N —n, ie,

L H)x) = flx),  i<j<i+n @.1)
Then, for s = min(k, n),

Kn—iw(DYf, =) = 3“ Di(f — Ln,if)“Lm[a:i,mH,,] s 0<j=<s,

; . 4.2
I DAL i f )Ltz j>s “4.2)

Proof. Consider first the case when & = 0. It is well known that we can
write L, ; f as

i+n

(Lo = ¥ f0) 10, (43)
where
b0 = 11 = = s/ T s = .
125 175

From their definition, it is clear that the /;(x)’s form a partition of unity i.e.,
i+n
Y= li(x) = 1. Thus, we can express f as

i+n

f) = YU, x €D, Xl

Hence,
i+n

(f— Ln.if)(x) == Z (f(x) —f(xi)) Ii(x)3 X € [xi ’ xi+n]- (44)

i=i
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Because 4 € Z(a, b) and m is fixed, it is readily verified that
| DT LG Lz pmy,0] < K777, r=0. 4.5)
Using the above inequality for r = 0 in (4.4) then gives

iLf— Ln,if”Lw[a:,-,x,-H] < Kw(f; ),

the special case s = 0 of the first inequality of (4.2). Next, since the /(x)’s
form a partition of unity, then for any r with r > 0,
i+n

fx) Y Dl(x) =0,  x€e[x;, Xial.

J=t
Hence, from (4.3) we can write

i+n

DLy f)(%) = Z, (fx) = f) D'lx),  r>0, x€[x;, Xl

and applying the bounds of (4.5) in the above expression then gives the second
inequality of (4.2) for the special case s = 0. For k > 0, one can use the
Peano kernel theorem argument, as employed in the proof of Lemma 3.2.

Q.E.D.

For functions fe€ W¥[a, b], we have the following extension of
Theorem 4.1.

COROLLARY 4.2. With the hypotheses of Theorem 4.1, if fe Wr[a, b]
withk > 0and 1 < r < o, then for s = min(k, n) and r < q < o,

K== 0i04a(a) || Do gy
r ?!*i+n

> l D’(_f - Ln,if)”Lq[m,-,a:H,,] ’ 0< J<s
| DXL, i |z gl 5 J>s.

It is now useful to quote a stability (or perturbation) result concerning
two-point Hermite interpolation, due to Swartz [37, 38].

(4.6)

Lemma 4.3.  Let h(x) be any polynomial of degree at most (4m + 1) satis-
Jying

| D’hO)] < F(8) 8, | D) <F@®)-87, 0<j<2m, 47
for some function F(5). Then, for 1 < q < oo,

| Dh |l go.1 << KF(8) - 8~+0m,  j > 0. (4.8)
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The next stability result shows that error bounds similar to those of (4.2)
of Theorem 4.1 hold for the Lagrange polynomial interpolation of approxi-
mate data.

THEOREM 4.4. Given fe C¥a,bL k > 0, and given A€ P(a, b) with at
least (n + 1) knots, ie, d:a =xy <x, < <xy=>bwith N >n, let
L, .f,n > 1 fixed, denote the Lagrange polynomial interpolation of approxi-
mate values of f in the knots x; , X4y yeus Xiym , 0 <i <N —n,ie, L, fisa
polynomial of degree n satisfying

Lni D) = o5, i<j<i+n, 4.9)
where, with s = min(k, n), we assume that a function F(f, ) exists such that
Loy — fx)l < 7°F(fim), i<j<i+n (4.10)

Then,

y I DI(f — Loiflglesnin » 0 <J <5,
Kage—i k " X > s ol &Pyt .
=~ {w(D*, 7) -+ F(f, m)} N DL iF il 5 j>s.

@.11)

Proof. If L, ;fdenotes the Lagrange polynomial interpolation of fin the
sense of (4.1) of Theorem 4.1, then we can write

D(f — Ly sf)x) = DI(f — Ln,if)X) + D(Lpif — L if)),
DL, 1f(x) = DLy :f)Nx) + DLy if — Lasf)),

where L, ;f is the Lagrange polynomial interpolation defined by (4.9).
Clearly,

” Dj(f_ I:n,if)”Lw[xi,mH,.]
<N DS — Luilllegtzpas e + 1 D Lnif = Lo iflrgioped - (413)

For 0 < j < s, the first error bound of (4.2) of Theorem 4.1 can be used to
bound the first term on the right of (4.13). To bound the second term on the
right of (4.13), we have from the definition of /,(x) in (4.3) and the hypothesis
of (4.10) that

(4.12)

i+n

Y (f6x8) — o) Do)

k=t

I l)j(L'n,if‘~ f‘n.zf)(x)] =

<wFfm Y | D)

k=%

< Kﬂ's—jF(.f’ 77)’ X € [xi H xi+n]1
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the last inequality following from (4.5). Thus,

” Dj(Ln,if_ zn.if)”L‘,o[:c,-.:lt:,-i,"] < K.”s—:iF(f; 77)3 (414)
which then gives the desired result of the first inequality of (4.11). The proof
of the second inequality of (4.11) is similar. Q.E.D.

The analogue of Corollary 4.2 for Theorem 4.4 is

COROLLARY 4.5.  With the hypotheses of Theorem 4.4, if f € W¥[a, b] with
k>=0and 1 <r < oo, and for s = min(k, n), if [cf, (4.10)]

[ oy — flx))]

< K= | DS Lyl s IS <i+n, (415
then forr < g < ,

Km#H=i=0n+aj | Dssif oo
” D](f_ En zf)“l-q[zz 1, 0 <] <s
=1 ' i : ’ 4.16
Z W D i Plltfzrer] i>s. (4.16)

We now show how one may estimate derivatives of f at knots, needed to
define L-spline interpolants.

THEOREM 4.6. Given f € C*[a, b] with 0 < k < 2m and given 4 € #(a, b)
with at least 2m knots, let s be the unique element in Sp(L, 4, z) such that
Zy=m=zy,

Dis(x;) = Di(Lyp_y,: F)(X:)s 0<j<z,—1,0<i<N, @417

where L, , ; fis any Lagrange polynomial interpolation of f in 2m consecutive
KRnots X; , X;i1 »e-es Xjpam—1 With x; € [X; , X; 9m_1). Then, for 2 < q < oo,

K300 {ao(DY, ) + 7% | £ a1

I D(f — Sliglawrs 0 <Jj<Kk,

PN Dis om0 k<j<2m— 1. (“.18)

For polynomial splines, i.e., L = D™, the term involving || f llwria.01 in (4.18)
can be deleted.

Proof. This is a “3¢” proof. Let ¢t € Sp(L, 4, z) be the unique L-spline
which interpolates f in the sense of (3.16) of Theorem 3.5, and let
h e H#H1(4) be the unique polynomial spline such that

_ {D(f — Lam—.:f)(x)s 0<j<k,
th(xi) = _Dj(Lzm—l,if)(xi), k <j<2m. (4.19)
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Writing f — s = (f— t) + h + [(t — s) — k], we evidently have that
| D(f — S)HL,,[a.b]
<N D(f — Dllraw) + | Dhliggan) + § Dk — [t — sDliLany  (4.20)

for 0 << j < k. The first term on the right side of (4.20) can be bounded
above by (3.17) of Theorem 3.5. For the second term on the right side of
(4.20), we see from the definition in (4.19) and Theorem 4.1 that £ satisfies
the conditions (4.7) of Lemma 4.3 on each subinterval [x; , x;,,] defined by 4,
with

F(8) = K&6*w (D, 9).

Again, because 4 € #(a, b), it follows from (4.8) of Lemma 4.3 that for
2<g< o,

| DRl tap) < Kn*Ja(DY, =), 0 <j < 2m. “.21)

For the third term on the right side of (4.20), we observe that ¢+ — s is the
unique L-spline interpolant of 2 € C*"[a, b], in the sense of (3.1). As such, we
can apply the bounds of (3.2) of Lemma 3.1. But, from (4.21), we see that

I B llwamie,n < Knk-2mw(DEf, ).
Consequently, from (3.2), for 2 < ¢ < oo,
| Dith — (t — efen) < Kati-0D+0Da(DY, @),  0<j<2m— 1.

Combining these bounds gives the desired result of the first inequality of
(4.18). The remainder of the proof is similarly established. Q.E.D.

We remark that the error bounds of (4.18) of Theorem 4.6 and (3.17) of
Theorem 3.5 are identical even though the splines of interpolation in each
case are necessarily different. Note moreover that the interpolation of (4.17)
of Theorem 4.6 does not explicitly depend upon the continuity class of f, in
contrast with the interpolation of (3.16) of Theorem 3.5. In Section 5, we
shall show in a stability result that there is in fact a family of splines approxi-
mately interpolating f which satisfy these identical error bounds.

We conclude this section with an analogue of Corollary 3.6.

COROLLARY 4.7. With the hypotheses of Theorem 4.6, if fe W¥t[a, b]
withl <r < o0 and 0 < k < 2m, then for max(r, 2) < g < oo,
Kokt 15+ /04min-1/7.-1/2) || £|l4+104.0]

| DI(f — Sirfeds O <Jj<k,
Z U DS gyt » if k<j<2m—1

For polynomial splines, || f | w*+'(,51 can be replaced by || D**'f ||p[4,5 -
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5. STABILITY OF L-SPLINE INTERPOLATION

The technique of proof of Theorem 4.6 yields the following stability
result of Theorem 5.1, which generalizes Theorem 4.6. Roughly stated, one
can suitably perturb the data defining an L-spline interpolant without
affecting the nature of the original error bounds.

THEOREM 5.1. Given fe C¥[a, b] with 0 < k < 2m and given 4 € Z(a, b),
let 5 be the unique element in Sp(L, 4, z) such that for zy = m =z,

Djs(x,-) = 05, 0 g] < Z; — 1, 0 < i < N, (5.1)
where it is assumed that functions Fy f, m) exist such that for 0 < i < N,

| DIf(x;) — 251, 0 <j << min(k, z; — 1),

k—i
KaE(Lm 2 1)), if min(e,z — 1) <j <z — L

(5.2)

Define || Fll, = [m Tisg F(f; m1, for 1 < r < oo. Then, for 2 < q < oo,

Kk 0mro{(w(D¥, m) + | Fllz + 7™ || fllwta,01}

H Dj(f_ S)”L,Ja.b] s 0 < .] < k,

Z W Disllean s if k<j<2m—1L (5-3)

For polynomial splines, i.e., L = D™, the term involving || f|w x40 in (5.3)
can be deleted.

Proof. Let he H®+1(4) be the unique polynomial spline such that

Dif(x)) — a5, 0 <Jj < min(k, z; — 1),
.D’h(xl) = {5, lf min(k, Z; — 1) <] < Z; — 1, (5.4)
0, z; — 1 <j<<2m,

for all 0 < i << N, and let t € Sp(L, 4, z) be the unique L-spline defined by
(3.16) of Theorem 3.5. Writing f — s = (f — #) + & + [(¢t — s) — A], then
for2 < g << ow,and 0 <j <k,

| D(f — $)lle a1
< D(f — Dllgtam) + | DRl o + | DX(h — [t — sDllgtamr - (5.5)

The first term on the right side of (5.5) can be bounded above by (3.17) of
Theorem 3.5, i.e.,

| DI(f — Dllean < K{mh =AU (DAf, 1) + mom=i= QAR | fly 21g 515,
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Next, from the hypotheses of (5.2), and the definitions of (5.4), we evidently
have from (4.8) of Lemma 4.3 that

| Dh(x)] < Ka*~? max(Fi(f, m); Fia(fi 7)), x€[x:, x:0). (5.6)

But, since
max(F(f, m); Fi . (f, @)

N
S (FXf ™) + Fla(f, M2 < Z, FA(f, mPR = a2 || Fl,

forall 0 <i < N — 1, then
| DRl [a5) << KmF =12 (| F |, .

Similarly, squaring, integrating the inequality of (5.6), and then summing on
i yields

| D’k || fap) << Ka* 7 || Fll,. (5.7
Then, it follows from the last two inequalities for 2 < g < oo that
| DR 0 < Kab=i=Q2+A/0 || Fll, (5.8)

which bounds the second term on the right of (5.5). Next, we observe, as in
the proof of Theorem 4.4, that 1 — s is the unique L-spline interpolation of
h € C?[a, b] in the sense of (3.1). Since we have from (5.7) that

[ 2 llwgmia, o1 < Kab=2m || F |,
the error bounds of (3.2) of Lemma 3.1 then give us
| Dith — (t — e fes) < Kak==1BHD | F|),

Inserting these inequalities in (5.5) then gives us the first desired inequality
of (5.3). The lower inequality of (5.3) follows in similar fashion. Q.E.D.

We remark that the error bounds of (5.3) of Theorem 5.1 reduce to the
common bounds of (3.17) of Theorem 3.5 and (4.18) of Theorem 4.6 whenever
[l Flly < Kw(D*f,w). Thus, there is a family of splines approximately inter-
polating f which satisfy the bounds (3.17) or (4.18).

We conclude this section with an analogue of Corollary 4.7.

COROLLARY 5.2. With the hypotheses of Theorem 5.1, if fe W¥™{a, b]
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with 1 <r < 0 and 0 < k < 2m, and if functions F(f, ) exist [¢f. (5.2)]
such that for 0 < i < N,

; | Dif(x;) — a1, 0 < j < min(k, z; — 1),
k-+1—i 7. 3]
KrtioB ) 2 4 oy, i minGez— 1) <j<z—1, &

then for max(r, 2) < q < oo,
Kokttt o mint-1r 2| £l g,y + | F L}

I DI(f = o>, 0<j<k,
A Ds | a0 » if k<j<2m-—1

For polynomial splines, || f llw#+(q,51 can be replaced by || D*+f || L,ia.01 -

6. IMPROVED ERROR BOUNDS FOR INTERPOLATING HERMITE L-SPLINES

Thus far, our error bounds for general L-spline interpolation in the uniform
norm [cf. (3.23) with ¢ = oo] for functions f in W¥™[a, b] have had an
exponent of = which is one-half less than those for the corresponding poly-
nomial spline error bounds in the uniform norm [cf. (7.17)] for functions fin
WX qa, b]. In general, these error bounds for L-spline interpolation are
sharp (cf. Schultz and Varga [32]), but we now show that the general im-
proved form of the error bounds in the uniform norm for polynomial splines
can also be obtained for what we shall call Hermite L-spline interpolation. If
the incidence vector £ = (%, ..., £y_,) for the L-spline space Sp(L, 4, ) is
suchthat$, =m,1 <i{ < N — 1, then

H(L, 4) = Sp(L, 4, 8)

is called the Hermite L-spline space, where L is the differential operator of
order m of (2.3).

The first result (6.2) of this section involving Hermite L-splines improves
(3.17) of Theorem 3.5 for any 2 < g << 0.

THEOREM 6.1. Given f€ C*a, b] with 0 < k < 2m and given 4 € #(a, b),
let s be the unique element in H(L, 4) such that
Di(f — s)(x) = 0, 0<j<mink,m—1), 0<Ii<N,

<
; C (6.1)
Dis(x)) =0, if mintk,m — 1) <j<m—1, 0<i<N
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Then,
K= {w(D¥, @) + 7 || £y, *a,00}

” D](f_ s)HLw[a,b] > 0 < .] < k’ (6 2)
“ A Ds | ptan » if k<j<2m-—1 '
For polynomial splines, the term involving || f |lw 1,51 can be deleted in (6.2).

Proof. Let ge H®t1(4) be the polynomial spline interpolation of f in
the sense of (3.3) of Lemma 3.2. Writing f — s = (f — g) + (g — 5), and
s =g+ (s — g), it is evident that

I D](f— s)HLw[a.b] < D](f— g)“Lm[a,b] + D’(g - s)”Lm[a.b] >
0<j<k,

| Dis |lLtao1 < | D€L a1 + || D(& — SML fa.0]

6.3)

k<j<2m-— 1

Clearly, the results of Lemma 3.2 suitably bound the first terms on the right
side of (6.3). Next, by definition, s is also the H(L, 4)-interpolant of g in the
sense that

Di(g —s)x) =0, 0<j<m-—1  0<i<N

As such, we could make use of recent results of Ciarlet and Varga [13,

Corollary 4], but a self-contained proof is instead given. Let G(£, n) denote

the Green’s function for the boundary-value problem

D*y(x) = 7(x), x€ (0, 1),
Diy(0) = Diy(1) = 0,0 <j<<m— 1.

Because s interpolates g at the knots x; we can write for x € [x; , x;.,] that

1

(g — — pem— iG (XX il D — s)(x; .

Di(g — ) = W [ [9G (F5 ) [og)] Dn(g — $)wi + wh) d,
0<j<2m—1,

where h; = x,.; — x;; and the boundedness of 8/G(§, )/9¢’ in [0, 1] % [0, 1]
givesus for 0 <<j << 2m — 1, x e [x;, x;.4], that

| D’(g — s)(x)| < KK || D™ (8 — $)lli eyl
. . 6.4)
< KRN D M|t s, + KB DS i i -
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Next, since the leading coefficient ¢,(x) in the definition of the operator L is
strictly positive in [a, 8] (cf. Section 2), then L*Ls(x} = 0 in (x;, X;q)
implies that

2m—1
D*s(x) = Y, dy(x) D's(x),
=0
where each d,(x) is bounded on [a, 4], so that
2m—1

ID*s |z ot < K Y, [ D' llz o -
=0

By means of the triangle inequality, this can also be bounded above by

I D*s e tam) < K Z {1 DY |l taod + 1| DOf — i fand

2m—1

+ 11D — Miegastt + K Y 11 D'sWefamt -

i=k+1

The first sum, by (2.5), is just K| fllw_#fs.21, and the second sum is bounded
above from (3.4) of Lemma 3.2 by Kw(D*f, ), which in turn is bounded
above by K| f |l tla,01 - The third and fourth sums are, from (3.23) of
Corollary 3.6 with k = 2m — 1 and r = o0, bounded above by | g HW;M[,,,M ,
and hence

| D*™s |1 ta.01 < K{ll fllw .51 + Il & lwzmia,00}-

Thus, comparing with (6.4), it remains to bound || g [lw*(4,51 . By definition,
we can write

| & lwema,n = Z | Dg |l fa.01 + Z | Dig Iz fa.01 »

j=k+1

and hence, from the triangle inequality,

I8 llwzmta,o1 < Z {l D'(f — Dl gfamr + | DSl L fastt + Z | Dg lizpfa.1 -

j=k+1

Applying the bounds of (3.4) of Lemma 3.2, it follows then that

| & llwemla,n1 < | fllw a1 + KaF=2*™w(D¥f, ).
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But combining this with the inequality of (6.4) gives for 0 << j < 2m — 1
1 DH(g — $llrylamt < K{T* (DX, ) + 72 || fllw, *a,00s

from which the inequalities of (6.2) follow from (6.3). Q.E.D.

COROLLARY 6.2. With the hypotheses of Theorem 6.1, if fe WFa, b]
withl <r << o0 and 0 < k < 2m, then for max(r, 2) < q < o,

; Di(f — 9L fa.b1 0<j<k

E+1—j—(1/r)+(1/q) > “ ) L,la,b] » 5

K ”fHW’,‘+1[a,b] = l] D7S||Lq[a’b] ,q lf k- J < oy 1.
(6.5)

The technique of proof of Theorem 6.1 yields the following stability result
of Theorem 6.3. We omit its proof.

THEOREM 6.3. Given fe C¥a, b] with 0 < k < 2m and given 4 € #(a, b),
let s be the unique element in H(L, A) such that

DjS(Xj) = Qg5 0 <] < m — 1, 0 < l < N, (6.6)

where it is assumed that functions Ff, m) exist such that for 0 < i < N,

- | Dif(x;) — 051, 0 <j < mink,m— 1),
% i ,
Kr2FFm) 2 ) o, if minte,m—1)<j<m—1 &7
Then,
K{m*=Hw(D¥, m) + || Fllo + 7% || fllw*1a,60}
”D](.f_ S)”Lw[a,b] s 0 < J < k9 (6.8)

Z WD o o K<j<2m—1

In particular, if
a;; = Di(Lomy,: f)x), O0<j<m—1,0<i<N, (6.9)
where Ly, 1. f is the Lagrange polynomial interpolation of f in the knots

Xy Xji1 seers Xjsom—1 With X; € [x; , X;,9m_1], then the bounds of (6.8) are valid
with the term || F ||, deleted.

COROLLARY 6.4, With the hypotheses of Theorem 6.3, if fe W¥a, b]
withl <r < o0 and 0 < k < 2m and given 4 € #(a, b), let s be the unique
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element in H(L, 4) satisfying (6.6), where it is assumed that functions F,(f, )
exist [cf. (6.7)] such that for 0 < i < N,

- | Dif(x) — 251, 0 < j < minlk, m — 1),
k+1—i f. ,
Ka*15F(f, m) = | o 51, if mink,m —1)<j<m-—1,
(6.10)
then for max(r, 2) < g < o,
Kﬂk+1—a‘—(1/r)+(1/q){|[f”Wf“[a'b] + ”F”r}

> ” D’(f_ s)”Lq[a.b] s 0 < .] < k9

Z W Disligam» i k<j<2m— 1. ©11)

7. POLYNOMIAL SPLINE INTERPOLATION OVER UNIFORM PARTITIONS

In this section, we prove a result for smooth polynomial spline interpolation
over uniform partitions. We begin by stating the following result of Swartz
[37], involving “odd-derivative” boundary interpolation [cf. (7.2)].

LemMA 7.1. Given fe C*™[a, b] and given A,e H(a,b), let s be the
unique element in Sp'"™(4,) such that

(f=9)x)=0, O0<i<N,

D2j—1(f_ s)(a) — _Dzj—l(f_ S)(b) = Os
1<j<m-—1, if m>1

7.1

Then,
| DI(f — Niglapy < Ko™ | D*f|f 1001, O0<j<2m—1. (1.2)

The result of Lemma 7.1 can be generalized as follows; we remark that
the case £ = 0 can be found in Swartz [38, Corollary 9.1].

Lemma 7.2.  Given f e C*a, b] with 0 < k < 2m and given A, € %(a, b),
let s be the unique element in Sp'™(4.,) such that
(f—9)(x)=0, O0<i<N,
D Hf—s)@) = D5 Hf—)b) =0 if 1<2—1<k (13
D¥-15(q) = D?-15(b) = 0 if k<2j—1<2m—3.
Then,

» 1D(f — e a1, O0<j<k
¥ k wol8s »
Kl m) 2 4 Dl an o i k<j<2m—1. 79



30 SWARTZ AND VARGA

Proof. Let ge H®™(4,) be the unique interpolation of f in the sense
of (3.3) of Lemma 3.2, Then, s, as defined in (7.3), is the unique Sp™(4,)-
interpolant of g in the sense of (7.1) of Lemma 7.1, and hence, from (7.2),

I D8 — S a1 < Kn*™ | D lp 11, O0<j<2m—1

But, from (3.4) of Lemma 3.2, || D**g ||;_(a,51 < K7**™w(D*f, ) so that
I DH(g — iglan) < Kr*7w(Dif, ), 0<j<2m—1 (15
On the other hand, from (3.4) of Lemma 3.2,
I D(f — Dleglasy < Ka*w(D¥, m), 0<j<k,

and combining the last two inequalities establishes the first inequality of (7.4).
The second inequality of (7.4) follows similarly from (7.5) and (3.4) of
Lemma 3.2. Q.E.D.

We remark that the inequality of (7.2) will be seen (Lemma 8.3) to be valid
also using L, norms throughout. Hence, the conclusion of (7.2) can be
strengthened to read

| D(f = Sliegamy < K7™ || D*'f || fa)
0<j<2m—1, 2 < g < oo (1.2)

This is used in proving

COROLLARY 7.3. With the hypotheses of Lemma7.2, if fe Wit a, b]
with0 < k <2mand1 < r < o0, then for max(r, 2) < g < oo,

; Di(f — $)L,la.b1 0<j<k
KakHi-i—(/n+(1/0) | pr+L > (Il D ola.0] > ) ’
VD5 eed) 2y Dis s o k<j<2m— 1.

(1.6)

We now prove one of our main results, which for spline spaces improves
(3.17) of Theorem 3.5 for any 2 < g < oo.

THEOREM 7.4. Given fe C*[a, b] withO < k < 2mand given A, € #(a, b),
let s be the unique element in Sp'™(4,) such that

(f—s)x) =0, O0<i<N\,
Di(f —s)a) = DI(f— s)(b) =0 for 0 <j<mink,m—1), (7.7)
Dis(a) = Dis(b) = 0 if mintk, m — 1) <j <m— 1.
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Then,

I D(f— Sl gerr, 0<Jj<k,

k—j k > )
Kn w(Df; 7T) = ” D’s”Lw[a,b] , # k < ] < 2m — 1.

(1.8)

Moreover, if 4, has at least 2m knots, and § € Sp™(d4,) is instead defined by
means of

(f=Hx)=0, O0<i<N,
0

. . 1.9)
Dis(a) = D¥(Lap-1,0f)a),

where L,,,_,of is the Lagrange polynomial interpolation of f in the knots
X 5 X1 yeeer Xam—1 , With a similar definition of § at x = b, then the bounds of
(7.8) remain unchanged if s is replaced by .

Proof.! Let t e Sp™(4,) be the unique polynomial spline which inter-
polates fin the sense of (7.3) of Lemma 7.2. We now construct a particular
polynomial spline # € H?"+1)(4,). To begin the construction, let

{o.4(x), b1.5(x) ?7:0
be the unique polynomials of degree (4m - 1) such that
D', ;(0) = 8, ;8,0, D', (1) =801, 0<1Lj<2m,i=0,1.

Explicitly, for example, we have

boa) = [ ot — opm ][ pamt — pyem

Next, we define for 0 << j < 2m

Bosx) = 36’,%""' (& = aym, xela,a+ 7,

otherwise,

_ {7y ((x — b + m)[m), xel[b— =, bl
Frix) = 30, otherwise.

1 We have just discovered a recent result of Subbotin [42, Corollary 2], showing that there
exists a spline of odd (even) degree, interpolating f at (half-way between) the interior knots,
which satisfies the first inequality of (7.8). The boundary conditions and the proofs,
however, are different.

640/6/1-3
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By construction, each ¢, ,(x) is a polynomial spline in H®m+1)(4,). We then
set

min(k,m—1)

hx)= Y (DIt — s)@) - o, i(x) + Di(t — s)(b) + Fy.,(x)}

i=0
2m—1

+ > {Dit(a) + $o.(x) + Dit(b) - $1,,(x)}, (7.10)

j=min(k,m-1)+1

so that 4 is also an element of H®@1(4,). Writing
f=s=((—=0O+h+I[Ct—s —H,

it is evident that for 0 << j < k,

| D(f — L laon
<UD — Ollglant T 1 Dbl famr + 1| D — (1 — Dl popr - (7.11)

The first term on the right side of (7.11) can evidently be bounded above by
(7.4) of Lemma 7.2. To bound the second term on the right side of (7.11), we
note from a simple calculation based on the definitions of &; ,(x) that

| D'isllrem < Knmtio, 1 <g< oo, 0<1<2m. (7.12)
Next, note that from the definition of s and ¢ that

| Di(s — t)(@)| = | DI(f — 1)(a)| < Kn*~Iw(D¥, ), 0 < j < mink, m — 1),
(7.13)
the last inequality following from (7.4) of Lemma 7.2. Similarly,

| Di(s — )(@)| = | Dit(a)| < Km*—iw(D¥f, ), if min(k, m — 1) <j <2m-1,
(7.14)

with analogous inequalities holding at the endpoint b. Thus, from the
combined inequalities of (7.12)—(7.14), it follows then from the definition of
h in (7.10) that

1 DL fas) < Kma(DY, ),

< m,
| D3k a,01 < K7+ Q2o ( DY, ar),

2
) (1.15)

0
0 m.

//\ //\

<J
<J

The first inequality of (7.15) then bounds the second term on the right side
of (7.11). For the third term of (7.11), we note that + — s is in fact
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the Sp™(4,)-interpolant of 4 in the sense of (3.1). As such, the error bounds
of (3.2) of Lemma 3.1 are applicable, i.e.,

| Dith — (t = SDegten) < Ka?™ 22 [ D>kl e, O0<j<2m—1
But, from the second inequality of (7.15), we deduce that
| D¥h || ,La,01 < Kt =2 172( DY, ar),
and consequently,
| Dith — (t — s o) < K7D, m),  0<j<2m—1

Combining these bounds gives the desired result of the first inequality of (7.8).
The remaining inequalities of (7.8) are similarly established.

Finally, suppose that § € Sp™(d4,,) is defined, as described in the statement
of Theorem 7.4, by means of Lagrange polynomial interpolation of f at the
boundaries of [a, b]. In this case, we define & e H®m+1(4,), in analogy with
(7.10), by

2m—1

hx) = Y, Dt — @) - $o,(x) + DIz — 5)b) - $ps(x)}). (7.16)

i=0
Since | D(§ — t)(@)] < | D(§ — f)@)| + | D'(f — t)(a)| , and
| Di(s — t)a)| < | D5(@)] + | D't(a)l
it follows directly from Theorem 4.1 and Lemma 7.2 that
| DE — )@ < Kr* 7 w(D,7m), 0<j<2m—1

But since these same bounds were used in (7.13)—(7.14) to establish the bounds
of (7.8) for s, it follows that the bounds of (7.8) remain unchanged if s is
replaced by §. Q.E.D.

COROLLARY 7.5. With the hypotheses of Theorem 1.4, if f € W}*a, b] with
0<k<2mand 1 <r < o0, then for max(r,2) < q < oo and for either
sor§,

; DI(f — Sligfas1, O0<j<k
Kak+1=i-(/r)+1/g) || ph+1 bl = ! ) qla.bl s =S
I f”L,[ ,b] | Dis HLa[a . if k<j<2m-—1.
(7.17)
It is worth mentioning the relationship of Theorem 7.4 with the many
known results in the literature on interpolation and approximation errors for
polynomial spline functions. Most authors have considered error bounds in
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the uniform norm. For cubic splines (m = 2), the validity of the case k = 2
of Theorem 7.4 was first indicated in Ahlberg and Nilson [1, p. 104], while
the case £ = 3 was given by Birkhoff and deBoor [4, 5], both results being
for more general partitions 4 of [a, ] than those considered in Theorem 7.4;
see also Swartz [38, Section 10]. For periodic cubic splines, the earlier results
(k = 2) of Walsh, Ahlberg, and Nilson [41] were extended by Sharma and
Meir [34], Nord [24] (with his well-known counterexample), Cheney and
Schurer [12], Meir and Sharma [23], and Ahlberg, Nilson, and Walsh [3].
For cubic splines defined by interpolation not necessarily at knots, Meir and
Sharma [22] have related results.

Concerning the case of higher-order spline interpolation of odd degree for
general partitions, Schoenberg [27] and Ahlberg, Nilson, and Walsh [2, 3]
have presented results related to Theorem 7.4 and Corollary 7.5, generally
under different boundary conditions.

For higher-order odd-degree splines and uniformiy spaced knots, Ahlberg,
Nilson, and Walsh [3] gave a result like that of Lemma 7.1 for periodic
boundary conditions, while Subbotin [36], working with even-degree inter-
polating splines with interpolation taking place half-way between the knots,
proved related results. For general odd- as well as even-degree interpolating
splines, Golomb [14, 15] has error bounds in the periodic case which
correspond exactly to those of Theorem 7.4 and Corollary 7.5, but the proofs
are of a different nature. Golomb [14, 15] also presented the first few terms
in the asymptotic expansions of the errors (cf. also Swartz [37]), and he also
exhibited [15, Theorem 4] cases in which the use of periodic boundary
conditions for interpolating splines (of degree at least five) yields dramatically
poorer convergence rates than Hermite boundary conditions.

Approximating splines which are defined by linear processes other than
interpolation have been considered by various authors. Schoenberg [28]
showed the convergence of his high-order splines (with uniformly placed
knots) to a continuous function. In the fundamental work of deBoor [9],
error estimates like those of Theorem 7.4 have been obtained for even- as
well as odd-degree splines with no assumptions on the partitions. The splines
used there are obtained by linear projections, these projections being explicitly
given for linear and quadratic splines (cf. deBoor [8, 9]). We note that, in
contrast with interpolatory splines, deBoor’s approximations converge
locally, at rates depending on the local smoothness of the function approxi-
mated. Schultz [30, p. 198] gives error estimates for integral least-square
spline approximations. Finally, we mention that other linear maps onto the
splines have been successfully used by Strang and Fix [35] for periodic spline
approximation in higher dimensions.

To conclude this section, we state a stability result which is established in
the manner of Theorems 5.1 and 7.4.
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THEOREM 7.6. Given f e C*[a, b] with0 < k < 2m and given 4, € #(a, b),
let s be the unique element in Sp™(4,) such that

s(x;) = a9, 0<i<N
(1.18)
Dis(a) = a5, Dis(b) = an,;, fl<j<m—1,

where it is assumed that functions Fyf, =) exist such that

Kﬂsz(f; 77) 2 If(x,) — Q&0 I N 0 < i < N,
Ko iF(f,m) = | Dif(a) — a5 51, if 1 <j<mink,m—1), (7.19)
Kﬂk—jFo(_f; 77) 2 ’ Gy, ; ‘ E] if‘ min(k’ m — 1) <j < m — 1’

with similar inequalities holding at x = b. Then, with

1 Fllo = max, F(f, m),

i 1 D(f — e, 0<Jj<k,
k. k ol ®s
K7T J(w(Df; 77) + ”FHOO) > ”Djs”[,w[a,b] , Zf k < J < 2m _ 1.

(7.20)

In particular, if 4, has at least 2m knots, and if s and its first (m — 1) derivatives
at x = a are defined by (1.9) in terms of Lagrange polynomial interpolation of
{03, where the o, satisfy the first inequality of (7.19), with a similar
definition holding at x = b, then the bounds of (7.20) are valid.

COROLLARY 7.7. With the hypotheses of Theorem 1.6, if fe WFa, b]
withl <r << o and 0 < k < 2m, and if functions F(f, =) exist [cf. (7.19)]
such that for0 <i << N,

Kt F(f,m) = [ f(x) — o0l 5 0<i<NV,
Kt IF(f,m) > | Df@) — a1, if 1 <j<min(k,m—1), (1.21)
Kmt=F(fim) > o], if mintk,m —1) <j<m—1,

with similar inequalities holding at x = b, then for max(r,2) < g < o0,
Kaktl=i=0n+ /|| D¥f|| g 50 + I F I}

” D](f_ S)”L,,[a.b] ’ 0 < ] < k, (7 22)

“ Al D's | Lyta,01 5 if k<j<2m—1. '
As an application of Theorem 7.6, consider the case of cubic splines
(m = 2) on a uniform partition, Sp®®(4,), where 4, has at least four knots,
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ie., N = 3. Then, given fe C*a, b],0 < k << 4, let s Sp?(4,) be the
unique element such that

S(x,;) :f(xi)5 = Q0 5 0 < i < Na
Ds(a) = (1/6m){ —111(xo) + 18f(x1) — 9 (xa) + 2f (Xa)} = 0191,
Ds(b) = (1/6m){11f(xy) — 18f (xy_1) + 9f (Xxn-2) — 2f (Xy_g)} = an.1,

where 7 = (x;,; — X;), 0 << i <X N — 1. Because the right sides of the last
two expressions above are simply obtained by differentiating the cubic
Lagrange interpolation of f in the four knots x,, x;, X,, X3 and
Xn_s» Xy—25 XN-1, Xy » and evaluating the result, respectively, at x = x, and
Xx = xy, then the inequalities of (4.2) of Theorem 4.1 are applicable with
s = k, from which the inequalities of (7.19) follow with F,(f, =) = w(D*f, =).
Consequently [cf. (7.20)],

_; ”D](f— S)HL [a.,b] » 0 < J < k’
k k oot @s
K2 m) 2 0 Dig i tan o 0f k< <3,

which was stated in Section 1.

We remark that the special case of the stability result of Theorem 7.6 for
cubic spline interpolation (m = 2) has also been independently developed by
matrix techniques in Carlson and Hall [11].

8. POLYNOMIAL SPLINE INTERPOLATION FRRORS UNDER SECOND INTEGRAL
RELATION BOUNDARY CONDITIONS

In this final section, we discuss extensions of our previous results for
polynomial splines (L = D™) to more general boundary conditions.
Consider now any set of 2m real point functionals B = {B;}i7;* on

WZ2™a, b), called boundary conditions, of the form

2m—1
Big = Y. {a;:D'%(a) + b;:Dig(b)},
=0 8.1)
0<j<2m—1, geW;"a, bl
If the 2m X 4m matrix M is defined by
a0 boo @1 boa bo,2m-1
M=| @ .| 8.2)

Qom-1,0 * bymy,am1
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we assume that

rank M = 2m, (8.3)

i.e., the functionals of (8.1) are linearly independent. In addition, we assume
that, for any g € W2™[a, b] with B;g = O for all 0 < j < 2m — 1,

f " (DM dt — (—1ym f "¢ Dimg dr. (8.4)

In other words, since integration by parts gives

b

b b x=
[ @repdi= 1 [ g Dmgar+ P(g)|

a

where the bilinear concomitant P(g) is defined by

m—1

P(g) = Y (—1y D-g(x) - D™¥g(x),

=0
then (8.4) is equivalent to P(g) = O for all g such that
Big=00<j<2m— 1.

By means of elementary row operations applied to M (cf. Birkhoff and
MacLane [6, p. 162]), there is no loss of generality in assuming that M is in
lower reduced echelon form, i.e.,

(i) every leading entry (from the right) of each row is unity;

(ii) every column containing a leading entry (from the right) has all
other entries zero; (8.5)

(iii) if the leading entry (from the right) of row i is in column ¢, , then
t1<t2<"' <tm.

We remark that the elementary row operations which bring M into lower
reduced echelon form leave the property of (8.4) invariant.

We now cite a few examples of boundary conditions B = {B;}3";* which
satisfy (8.3)—(8.5).

ExampLe 1. Hermite boundary conditions:

B,jg = Digla), Byng=Digh), 0<j<m—1
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For the case m = 2, M is given explicitly by

OO O =
OO = O
[ e i ]
- OO
SO OO
SO OO
(=R en B ew B}
SO OO

ExaMpPLE 2. Odd-derivative boundary conditions:
B,g = gl@);  Big = gb);
By;g = D¥1g(a); Bying = D¥g(h), 1 <j<m— 1.
ExampLE 3. Even-derivative boundary conditions:
Byig = Dgla);  Byag = D¥(k), 0<j<m-—1
ExaMmpPLE 4. Periodic-type boundary conditions I:
Byg = gla);  Big = g(b);
B;g = D'~'gla) — D'7'g(b), 2<j<2m—1
ExaMpLE 5. Periodic-type boundary conditions I1:
B;g = Dig(a) — Dig(h), 0<j<2m—1.
ExampPLE 6. Natural boundary conditions:

BOg = g(a)7 B2J'g = Dm+j—1g(a)’ 1 <

j < m — 1,
B, g = g(b), Byiag = D™ gh), 1<j<m—1L

We next define a way in which functions fe C*[q, b] can be interpolated
in Sp(D™, 4, z) when 0 < k < 2m. The approach is like that of the inter-
polation in (3.3) of Lemma 3.2, i.e., high “derivatives” of f which are needed
to define the interpolation are treated as though they were zero.

LeMMA 8.1, Given f& C*[a, b] with 0 < k < 2m, given 4 € P(a, b) with
N > m [cf. (2.1)], and given point functionals {B;}2"s* of the form (8.1) satis-
fying (8.3)—(8.5), then there exists a unique s € Sp(D™, 4, z) which interpolates
fin the sense that

D(f — s)(x;) = 0, 0<j<mink,z;, — 1), 1 <i<N-—1,
Dis(x) =0, if mink,z;, - D) <j<z;—1, 1 K<i<N-1,
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and

Bjs = f {a;:Df(a) + b,:D(B)}, 0<)<2m— L 8.7

=0

Proof. Since the complete proof follows rather familiar lines (cf. Schultz
and Varga [32, Theorem 3]), we merely sketch it. The determination of such
an s € Sp(D™, 4, z) depends on the solution of 2mN linear equations in 2mN
unknowns, and as such, it is sufficient to show that if f(x) = 0 on [a, b], then
s(x) = 0 also on [a, b]. Consider

[ nseopax =3 [ pnscop as.

Integrating by parts, and using the continuity requirements of (2.4), the
interpolation requirements of (8.6), and the assumption of (8.4), gives us
that s(x) is a polynomial of degree at most m — 1, But from (8.6), since s
interpolates = 0 in (N — 1) distinct points then, as N — 1 = m, s(x) =0
on [a, b]. Q.E.D.

The proof of the next lemma, the second integral relation, also follows
along the same familiar lines (cf. [32, Theorem 5]), and is omitted.

LeMMA 8.2. Given f e Wi™a, bl, given A € P(a, b) with N > m,
and given point functionals {B;};7* of the form (8.1) satisfying (8.3)~(8.5), let
s€Sp(D™, 4, z) be the unique interpolation of f in the sense of (8.6)~(8.7)
withk = 2m — 1. Then,

| (Dm(f — )P dx = (=) | (f — 5) D*f d. (8.8)

We next state a result on error bounds for the interpolation of Lemmas
8.1-8.2, which is the analogue of Lemma 3.1. This too can be proved in
analogy with the results of Ahlberg, Nilson, and Walsh [3, Chapter 5] and
Schultz and Varga [32]. We remark that our proof of Lemma 8.3 depends
on an inequality like that of Hille, Szegt, and Tamarkin [17], relating the
norm of the derivative of a polynomial to the norm of the polynomial. For
details, see Swartz [39].

LemMa 8.3. Given fe WE"[a, b, given 4 € #(a, b) with N > m, and given
point  functionals {B;}5 of the form (8.1) satisfying (8.3)~(8.5), let
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s € Sp(D™, 4, z) be the unique interpolation of f in the sense of (8.6)~(8.7) with
k = 2m — 1. Then, for 2 < q < o0,

| DX(f — Sllgylapn < Km?m=i=W2ra/@  prmfiyl, ey, 0<j<2m— L
(8.9)

We now extend the result of Lemma 8.3 to less smooth functions, just as
Theorem 3.5 extends the result of Lemma 3.1.

THEOREM 8.4, Given fe C*la,b] with 0 < k < 2m, given 4 € P(a,b)
with N > m, and given point functionals {B;}3"s™ of the form (8.1) satisfying
(8.3)~(8.5), let s € Sp(D™, 4, z) be the unique interpolation of f in the sense of
(8.6)(8.7). Then, for 2 < q < o0,

i Di(f — S)lfam, 0<J <K,
k—i—(1/2)4(1/q) k > ” _ Jla,b] .
K O™ 2 Do i k<j<2m—1. 10

Proof. Given fe C¥[a, b], let g € C*™[a, b] be its interpolation in the sense
of (3.3) of Lemma 3.2. The triangle inequality gives us for 2 < ¢ << co that

I DS = llras) <D — Dlrgans + | D(g — e e »
0<j<k (I

where s € Sp(D™, 4, z) is the interpolation of fin the sense of (8.6)~(8.7). The
first term on the right-hand side of the above inequality can be bounded
above by (3.4) of Lemma 3.2. Next, note that s, while interpolating f in the
sense of (8.6)-(8.7), necessarily also interpolates g in the sense of Lemma 8.3.
Thus, from (8.9) of Lemma 8.3,

| DX(g — ilap) < Ka?m-i=(LR/a) | Dmg || 10, 0<j<2m—1.
But from the case j = 2m of (3.4) of Lemma 3.2, we have that
| D*™g l|Lla0) < Kr*=2"ay(D¥f, ),
and thus
| Di(g — $)liz tan) < Kak=i=Q/D+W/D(DES, o),

which yields the first inequality of (8.10). The remainder of the proof is
similar. Q.E.D.

The following extension of Theorem 8.3 is easily established.
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COROLLARY 8.5. With the hypotheses of Theorem 8.3, if f€ Wta, b]
withl <r < o0 and 0 < k < 2m, then for max (r,2) < g < oo,

Kork+1=3+ Qo +mine=1/r.~172) || DFIf]|, 1o

DS = Dlgats 0 <<k,

2 DS ligom s A k<j<2m—1. (8.12)

Actually, a more general form of Theorem 8.4 can be proved, along the
lines of Corollary 3.4. This is

COROLLARY 8.6. Given f(x) defined on [a, b] such that D*-f (for k > 1) is
absolutely continuous and D*f, 0 < k < 2m, is defined and piecewise-con-
tinuous on [a, b] with M > 0 discontinuities in the points { y;}y5; C (a, b),
assume that D*f is absolutely continuous on each subinterval (y;,y:u1),
0 < i< M(whereyy = a,ymyy = b), withD**if e L[y, , yinl 0 <i < M,
where | <r < c0. If A€ P(a, b) with N > m, and if the point functionals
{B;Ym of (8.1) satisfy (8.3)-(8.5), let s € Sp(D™, 4, z) be the unique inter-
polation of f in the sense of (8.6)-(8.7). Then, for max (r,2) < g < oo,

Kak=3+vaf MM ew(DE, m) + =47 || DR | g )

1 D(f — ey, O0<Jj<Kk, (8.13)
“ A Dslinan » if k<j<2m-—1 '

Proof. Following the proof of Theorem 8.4, let g € C*™[a, b] be the inter-
polation of fin the sense of (3.3), and consider the inequality of (8.11). For
r < g < o0, the first term on the right-hand side of (8.11) can be bounded
above by (3.15) of Corollary 3.4. To bound the second term on the right-hand
side of (8.11), we use (8.9) of Lemma 8.3, coupled with the second inequality
of (3.15), i.e., for max (r,2) < g < wand 0 < j < k,

| D(g — ey < Kr*=H 1 a{MYaw(D¥, ) -+ w17 | DV | fa0)s

which is the first inequality of (8.13). The remainder of the proof is similar.
Q.E.D.

We remark that for the special case of periodic boundary conditions, as
given in Example 4, the global error estimates of (8.13) of Corollary 8.6
contain, in the case of uniform partitions, certain error bounds obtained by
Golomb [15]. We should add, however, that Golomb [15] obtains in the cases
he considers a more precise description of the Jocal behavior of the inter-
polation errors at certain points.

We now turn to stability results related to Theorem 8.4. To establish such
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stability results, we first recall (cf. Section 7) the polynomials ¢, ,(x) of degree
(4m- 1) defined by

Dl(Pi,k(O) = Sl,k ' 8z‘,o > Dl‘Pi,k(l) = 8l,k8i,1 ,0<i<1,0< Lk <2m,

and we set
‘ho Po. k((x a)/ho)’ X € [a, a—+ ho = x1],
Folx) = otherwise,
3 () = hN—ﬂPl,k((x — b+ hya)hna), xelb— vy = xy,4,b]
Pr 0, otherwise.

Similar piecewise polynomials where used in Section 7 for uniform partitions
of [a, b]. Note that all @, .(x) are identically zero in [x, , xy_,], and are of
class C*™[a, b]. Next, applying the functional B; of (8.1) to @, ,(x) gives

BiGor = a5 BiGrx=10bir, 0<j, k<2m—1.(814)
Note that the value of these functionals in (8.14) is independent of the parti-
tion. Thus, if we consider any

2m—1

P(x) = kz {oPo.r(x) + BePrr(X)},

which is in C?>"[ag, b] and identically zero in [x;, xy_;], then finding a
Yn(x) with 0 <7 < 2m — 1 such that

By =8;,, 0<j<2m—1, (8.15)

amounts to solving the matrix problem [cf. (8.2)]

M(OL(” B(l) OL”) Ig(l) . é’i:l,-—l)T — (80,1 yens 82m—1,l)T' (816)
This, by virtue of the assumption (8.3) that rank M = 2m, has a nonzero
solution for each / with 0 < I <{ 2m — 1. In fact, making use of the assump-
tion (8.5-iii) that M is in lower reduced echelon form, we can find a solution
n(x) of (8.15) which can be expressed as

7(1)

hy(x) = Z {0 () + PP, (X)),  0<I<2m—1, (8.17)

where 7(l), the order of B,, is simply determined from the /-th row of M
by means of

() =min{k : |a; .|+ b, | =0 for all r > k}. (8.18)
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This of course means that we can also write [cf. (8.1)]

7(j)

Big = ) {a;:D'g(a) + b, :D'gb)}, 0<j<2m—1  (81)

=0
This order (/) of B, is used in
LemMa 8.7. Given the point functionals {B;)2"" of the form (8.1) satisfying

(8.3)-(8.5), let ¥ (x) be given by (8.17), so that i, satisfies (8.15). Then, for
AdeP(a,b)and for 1 < g < o0,

| Dl oo < KmrO-btl/e, 0 <k <2m, 0<I<2m—1. (8.19)

Proof. Using the representation of (8.17), the result of (8.19) follows
immediately from the bounds of (7.12) for the @; .(x) and the definition of
7(l) in (8.18) Q.E.D.

This brings us now to the following stability form of Theorem 8.4, in

which the boundary conditions {B,};7;" are only approximately satisfied.

This extends the result of Theorem 5.1 to polynomial splines satisfying
more general boundary conditions.

THEOREM 8.8. Given fe C*a, b] with 0 < k < 2m, given 4 € P(a,b)
with N > m, and given the point functionals { B;};"s* of the form (8.1) satisfving
(8.3)-(8.5), let s € Sp(D™, 4, z) be the unique interpolation of f in the following
sense:

Dis(x)=0;;, 0<K<j<z;—1, 1 <i<N-—1, (8.20)
where it is assumed that functions F{ f, m) exist such that for | <i <N — 1,

[D]:f(xi) - ai,:i Ia O <] < min(ks Z; — 1)’

k—i . >
AR (P i min(k,z — 1) <j <z — 1,

(8.21)

while at the boundary,
B;s = B;, 0<j<2m—1, (8.22)

where it is assumed [cf. (8.18)] that, with 7(j) the order of B; ,

Kt 0F,(f, m) > | B — 3. {a:.D@) + b, D))

0<j<2m—1. (823
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Then, with | FIE = m Yy FA(f,7) and for 2 < g < o,
Ka=i-2+Q /0y DXf, 1) + || F|lg}

I D(f — efant, O<j<k

N Dsllon > if k<j<om—1. &2

Proof. The proof is like that of Theorems 3.5 and 5.1, and is merely
sketched. Let e Sp(D™, 4, z) be the interpolation of f in the sense of
(8.6)—(8.7) of Lemma 8.1. Let Ay(x) € H?"+1(4) be the polynomial spline
such that for 1 <<i << N — 1 [¢f. (5.4)]

Dif(x)) — o, 0 <j<mnk,z — 1),
Djho(xi) = YT %5 if min(ka Z; — 1) <.] < 2y — 1’
0, z; — 1 < j < 2m,
and
Dihya) = Dihb) =0, 0 <j < 2m.
Let
2m—1 k
W) = ho() + Y. [T (@aD'f@ + by D'f) — B3] o).
=0 i=0

Then upon writing f—s=(f—1t)+ h+ [(t — s) — h], we have for
0<j<kand2 < g < oo that

I Di(f — S)HLq[a,b]
< I DS — Dliggamt + 1 Dhliram + | DR — (¢ — Higglaer - (8:25)

The first term on the right side of (8.25) can be suitably bounded above by
(8.10) of Theorem 8.4. The second term on the right side of (8.25) can be
bounded above as in the proof of Theorem 5.1, using the bounds on the
Pi(x)’s (8.19) of Lemma 8.7, coupled with the assumption of (8.23), for
x€[xy,x;] or x€[xy_1, Xyl In the same fashion, Lemmas 8.3 and 8.7
aid in suitably bounding the third term on the right of (8.25). The remainder
of the proof now exactly parallels the proof of Theorem 5.1. Q.E.D.

COROLLARY 8.9. With the hypotheses of Theorem 8.8, if fe WFa, b]
withl <r < oand0 <k <2m,and if functions F f,n) exist [cf. (8.21)-
(8.23)] such that for 1 <i <N —1,

| Dif(x) — a5 1, 0 <j<mink, z; — 1),

k1S
K2R m 2 ) o)), if minte,z, — 1) <j<z—1,

(8.26)
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while at the boundary,

k

B; — 2. {a;.:Dif(a) + b; DB},

=0

Knl=OF(f, 7) >

0<j<2m—1, (827
then with | FII. = 7 ¥oo F( f, ), and for max(r, 2) < q < oo,
Krkt1-i+1/g+min(-1/r,—-1/2){|| Dk+1f”1.,[a,b] -+ | Fll,}

1 D(f — e, 0<j<Kk,

PN Dis e i k<j<2m— 1. (8.28)

The preceding results of this section for polynomial splines were proved
for general partitions 4 e Z(a, b). If, however, we restrict attention to
uniform partitions 4, € % (a, b), then the sharper results of Section 7
generalize to our ‘“second integral relation” boundary conditions. The
proofs are similar to those in Section 7, with Lemma 8.3 replacing
Lemma 3.1, and the ; of Lemma 8.7 entering into the analogues of (7.10)
and (7.16). For details, see Swartz [39]). We state the analogue of Theo-
rem 7.6 as

THEOREM 8.10. Given fc C*a, b] with 0 < k < 2m, given 4, € #(a, b)
with N > m, and given the point functionals { B;}2">* of the form (8.1) satisfying
(8.3)—(8.5), let s € Sp™(4,) be the unique interpolation of f in the following
sense:

s(xi):ai’ 1<I<N—1a
_ (8.29)

Bis=8;, 0<j
where it is assumed that functions F{ f, m) exist such that

Km*F(f, m) = | f(x) — |, 1 <i<N—-1,

Kn—OF(f,m) > |8 — ¥ {0, D@ + b DFBY,  (830)
0<j<2m — 1,

where 7(j) is the order of B; . Then,

—j ” D](f_ S)le[a, 1 0 < J < ka
KD, m) + 1 F ) >y pgy, 0 k<< am— 1.
(8.31)

In particular, if 4, has at least 2m + 2) knots, and if Loy 1 f(Lom—y1.n-1.S)



46 SWARTZ AND VARGA

is the Lagrange polynomial interpolation of the data o ,..., oy, in the knots
X1 5 Xg 50005 Xom (’esP-, AN—2m se+5 AN-1 in the knots Xn—om > XN—gm+1 se++» xN—l)’
and if we take

7(5)

Bis = B; = Z {0, D' (Lom—11 /)@ + b; . DH(Lop_y N1 f)B)},
0<j<2m—1, (832

then the error bounds of (8.31) are valid, assuming only the first inequality
of (8.30).

For the last part of Theorem 8.10 involving the use of Lagrange poly-
nomial interpolation of the data, it is necessary to remark that the quantities
Di(Ly,, 3 1f)a) and DLy, y xv_1f)®) in (8.32) involve extrapolation of
the data at interior knots to boundary knots. [We have used extrapolations
because neither f(a) nor f(b) may be involved in any B, f, 0 <j << 2m — 1.]
The proof of this portion of Theorem 8.10 than depends on the observation
that the error bounds of Theorems 4.1 and 4.4 remain valid for these particular
extrapolations.

COROLLARY 8.11. With the hypotheses of Theorem 8.10, if f€ W¥+[a, b]
with 1 <r < o and 0 < k < 2m, and if functions F{ f, w) exist such that

Ka*F(f, m) = | f(x) — o, ], 1 <i<N-—1,

Kaki=rOF(f, ) >

Bz‘ - Z {a;..D'f(a) + b, ;. D(b)}], (8.33)

then for max(r, 2) < g < oo,
K== miagd) Dl ey + 1 F Il

| D(f — $)Lfamd > 0<j<k (8.34)
U Dis|iLtam » if k<j<2m-—1 )

We remark that even if the functionals of (8.1) are not expressed in echelon
form (8.5), the results of Lemma 8.1 through Corollary 8.6 remain valid.
The same may not be true for the associated stability results. The conclusion
of Theorem 8.8 does hold true if the perturbations of the functionals B;
are due really to suitable perturbations in the derivatives which occur in
each functional. Instead, if one independently perturbs each functional by
a corresponding order of magnitude, the analogous result may not hold.
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This phenomenon can be observed in the piecewise-linear interpolation
(m = 1) on 4 € #(a, b), under boundary conditions associated with

B,g = Dgla);  B,g = Dg(a) + g(b).

We finally observe that the results of Theorem 8.10 and Corollary 8.11
hold for nonuniform partitions 4 € #(a, b) in the cases of cubic (m = 2)
and quintic (m = 3) splines. The proofs are those of Theorem 8.10 and
Corollary 8.11, except that Lemma 7.1 is replaced with the analogous result
for Hermite boundary conditions, found in Birkhoff and de Boor [4],
Ahlberg, Nilson, and Walsh [3], and Swartz [38, Section 10] for m = 2,
and in de Boor [10] for m = 3.
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